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Equations of Motion for Continuum Systems 
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We construct equations of  motion for an N-component  cont inuum. The basic 
assumpt ion is that the dynamical  vector field is the sum of  two terms: a "conserva- 
tive" term, being a Hamil tonian vector field associated with the energy function 
of  the system; and a "dissipative" term, being a gradient vector field associated 
with a family of  functions. The resulting equations satisfy the usual  conservation 
laws for cont inuum systems, and, moreover, reduce to the "s tandard"  fluid 
equations when the cont inuum is a fluid. 

1. I N T R O D U C T I O N  

The notion of  continuum comprises all the possible phases of  matter: 
the gas, the liquid, and the solid phases. It is thus a relatively abstract 
concept. This is reflected in the theory of the continuum, being based on 
purely geometrical and thermodynamic considerations, without any par- 
ticular reference to the properties of  matter. The aim of this paper  is not 
to discuss the foundations of  continuum thermodynamics,  but to give a 
derivation of  the equations of  motion. We assume that the dynamical vector 
field X is the sum of two terms: a Hamiltonian vector field X H defined by 
the energy function and leaving the entropy invariant, and a "gradient"  
vector field X G describing the directed transformation of  mechanical and 
other forms of  energy into heat. The "dissipation function" r from which 
X G is constructed is given as the composite r o ~, where @ is a submersion 
containing the information about the dissipation mechanisms that are gen- 
erally valid physical laws, while the function r contains the information 
about the dissipation coefficients. 
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It is certainly a gain to be able to refer the complete information about 
the dynamics of a continuum system to a couple of functions. Our main 
motivation for this study has, however, been the construction of a dynamics 
for multicomponent systems. In fact, once we know the construction for a 
one-component system in a framework like this, then the generalization to 
the multicomponent case becomes trivial. 

In the following we have chosen to expose the construction by writing 
it out for an N-component  continuum. An interesting generalization would 
be to assume some or all of  the components to be charged. This can easily 
be obtained using the results of Aaberge (1986). In fact, some of the systems 
for which one would like to give a more complete description are multicom- 
ponent systems with charged components, such as electric conductors, which 
consist of an ionic lattice and a conduction electron gas. 

The state space of a thermodynamic system is a Banach manifold ~ (~) 
represented as a function space over space X =R 3. The states thus are 
sections 3': X ~ ~ of a fibered manifold ~r: X ~ ~. Moreover, the extensive 
observables of the system are represented by functions F: ~3 ( ~ ) ~  R; 3' ~ 
F(3") =Svfd3x, where f :  Jq(~)~R is a function on the q-jet extension of 
~, i.e., of  3' and its derivatives up to order q. Now, given ~, Jq~ is canonically 
given; Jq is a functor. Thus, morphisms of ~ are lifted by Jq to morphisms 
OfJq(~) (Pommaret, 1978). There also exist functors ~ between the category 
of fibered manifolds and the category of Banach spaces (Palais, 1968). 
However, presently one does not know which one to choose, i.e., which 
topology to choose on ~ (~)  in thermodynamics. Whatever this might be, 
a main part of thermodynamics can be formulated and a number of formal 
properties can be studied using the standard methods of differential calculus 
on ~ and Jq(~). This is what we will do in the following. A brief exposition 
of these methods, and the notation we will use is found in an Appendix to 
Aaberge (1986). 

2. DEFINITION OF THE SYSTEM 

The local observables of the N-component  continuum system are 
functions on the q-jet extension Jq(~) of the fibered manifold (Aaberge, 
1986; Pommaret, 1978; Palais, 1968) 

~u ={(x i, sn, ~rni, an~) c R3 • R N • • 

where an U is assumed to be a density-valued metric, and the fibration is 
defined by 

~?u-..-> X ,  (xi ,  sn, qTni, O[nij)t"9"(X i ) 

Accordingly, the local extensive observables of  entropy-density s~, 
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momentum-density ~,,i, the "moment"  density a.o ,  and the mass-density 
p.  of the nth component are represented by the functions J q ( ~ . ) ~  R: 

~" i 
S n ( X  , S n ,  �9 . . , OLnij ,  i i i 2 . . . i q )  ~ S n 

A i 
7"i'ni ( X , S n ,  . . . , OLnij ,  i l  i2 .  . . i q )  = ~lTni 

A i 
~  , Sn ,  � 9  an i j ,  q i2 . ,  i~) = a n i  j 

A i p , ( x ,  s , , . . . ,  a,ij, i~,~. ,~) = (det a , )  1/5 

In addition, we will need to consider the local observables of total entropy 
density s, total momentum density, total mass density p, and total angular 
momentum density li. These observables are represented by the functions 

N 

~o(x', s , , . . . )  = 2 s, 
n = l  

N 
i 

" l r i (X  , S n ,  . . . )  = ~ ,  Tl'ni 
r l = l  

N 
~ ( x  i, s , , . . . )  = Y, (det , , )1/5 

7 1 = 1  

l'~(x i, s , ,  . . . ) =  siM3gtxJzrt 

where e and 6 are the usual summation symbols. 
According to the laws of  thermodynamics, a thermodynamic system is 

defined by its energy function, i.e., in this setting by the energy density 

If the system is isolated, then a is homogeneous (i.e., 0 ~  = O) and invariant 
under rotations. In any case, we assume that ~ does not depend on the 
derivatives of s , ,  V~ ~ = O~fi. 3 

To a given set of extensive observables we have a corresponding set 
of local intensive observables. In the given representation called the energy 
representation, these are the temperature T, ,  velocity vi,, and the "stress" 
cr~ of the nth component. They are represented by the functions J q ( ~ )  ~ ~: 

^ i A i T , ( x ,  s , ,  .) . s , ,  .. = O~u(x ,  . . . )  
~ i  i ~ i v n ( x  , s . ,  .) ., s . ,  . .  =V,~ u ( x  , . . . )  
" / j  i ^ i 

~ n ( X ,  Sn ,  . )  ,,, . . )  �9 . = V ~  j u ( x , s ~ , .  

Since 7". =O,t~>O, the map r  where 

N 

g'~ = { ( x  i, u, o'm, %i ,  a,~)l " " "}, o5, = Y'. s,, m = 1 , . . . ,  N -  1 
r l = l  

3 V ~ = 8 ~ - V i d ~ . + V i V j O ~ c . . . .  
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is a diffeomorphism. On ~s, u appears as a coordinate function and s as a 
potential function. 

3. THE DYNAMICAL POSTULATE 

The evolution of  a thermodynamic system during a time interval [ to, t~] 
is described by a curve c on the state space ~ (~) .  The curve c is a generalized 
solution of an ordinary differential equation on ~ ( ~ ) ,  the equation of 
motion 

d =xojq(c) 
where X denotes the symbol for the dynamical vector field on ~ (*) .  The 
X = X~X7y ~ is represented as a differential operator on Jq(~);  its coefficients 
X ~ are functions on Jq(~).  

The only explicit assumption on the dynamics usually given is the 
following version of the second law of thermodynamics:  

fc(,2)sd3x>-fc(t,)sd3x, Vt2>tl 

i.e., the entropy is a Liapunov function for the evolution c of  an isolated 
system. We will, however, refer to the following postulate as the Dynamical 
Postulate: 

Dynamical Postulate. The dynamics of  an isolated system is supposed 
to be described by a vector field X such that: 

(a) X = xH -l-X G 

with 

XH(~) = V,~'~ i, f~ XG(,~) d3x>-O V),E ~ ( ~ )  

(b) The following relations hold: 
xH(~) " i  - - V g ' .  , (1) 

= Vj~'~ i, (2) 

Xn(fi) = V,~ H', (3) 

xH(I~)__ kl j l-lm --V,,(e,jk6 x ~ ,  ), (4) 

The conditions under (a) express that the dynamical vector field can 
be written as the sum of  two terms, one that conserves the total entropy 
and one with respect to which the total entropy is a Liapunov function. 
The conditions under (b), moreover, indicate that each of the terms are 
vector fields for which the energy (1), the total momentum (2), the total 
mass (3), and the total angular momentum (4) are conserved. 

x~ =v,~?' 
G ~' Gj 

x ~  - o,  - V X o  

= V,.(e0ka x ~ '~  ) 
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4. THE HAMILTONIAN TERM X" 

Let ~ be the fibered manifold 
~ i . . { ( x , s . , ~ , . , u ~  �9 } ~ x = { ( x ' ) c R  3} 

and let w be the symplectic form on the fibers 
N 

w= Z (d~ . ^ds .+dcb i . ^du . i )  
n = l  

Moreover, denote by xI t the submersion 

J,(~) -~ ~. 

(x', s., O.,  u.~, 4".) 
j " . 1 / 2  k l ~(x ' ,  s. ,  4)..i..j + s .O . . , , j (  4).)lg] 4~..,4~..jgk~ 

where j(~b.) = det ~b~.j and gkl(r is a metric on X = R 3. 
The Hamiltonian of a system is by assumption the density 

u o j . ( + ) :  J .+ , (~ ) - .R  

obtained by taking the pullback of its energy density ~ : J q ( ~ . ) ~  R. 

Proposition. The pushforward under �9 of the Hamiltonian vector field 
(V•h, --V, h, V,~,h ~, -Vu.,h) is the vector field X H whose components are 

x " ( L )  = " '  -Vi(s .v . )  

XH( Cr.,) = --V j( Tr,,v~ ) + Za,,ka ~J)-- s .7  ,7". - ~r.jV ,v."J - a,jk V,O'.̂ Jk 
H ^ " ,k  ^ k  .' ,k 

x (a.u) = - % ( a . ~ v . ) -  a.jkV,v. - a.ikVjv. 

Proof The proposition is proved by computation using the formulas 
of paragraph 8 in Aaberge (1986). I 

Theorem. The vector field X I~ given above satisfies the conditions of 
the dynamical postulate. 

Proof Part (a) is automatically satisfied, since s is a constant of motion. 
Part (b) is proved by computation and inspection; thus [equation (1)] 

N 
" . " j  ~ i j x  ~ k  - -  ~ ~ i  ^ j k l  Xn(a) =--Vk E {( T.s. + ~.jv. + a. ip ' . )v .  • zv.ce.~r. ) 

n = l  

and [equation (2)] 

H -'~ ~" N k" " "  
x (~ - , )= -v j  E (~ . ,~  ~ ' -l- 20~nikO'n + Phi [ t l = l  

_- _ v j C J  
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where P. = P,,~ and the terms look like (Aaberge, 1986) 

piOpj~ + 

Pii, OPi,jU - -  Pi  V i,OPixjU -]- 

p iq i20p U - - P i i t V i 2 0  p ~l q - P i V i  V i Op ~l "}- i l i 2 J  i l i 2 J  1 2 i i2J 

Piili2...iq-lOPili2...iq lj ~1 . . . .  ( - - 1 ) q - l p i V  il . . " V iq_lOpq... ,  ~ 1 j 

For equation (3) 

xH(t3) = - V i  Y~ (det a~)l/5~i 
n = l  

Equation (4) holds because ~ is invariant under rotations. It is thus a 
function of invariants only; accordingly, 

t~ ikcHj  __ Rjk42Hi 
6 ~ k  - -  ,a ta~rk �9 

The vector field X H is a generalization of the Hamiltonian vector field 
computed in paragraph 4 of Aaberge (1986) (assuming no charge and 
electromagnetic field). In fact, let a depend on a,  o only through pn = 
(def Olnij)l/S; then, 

^ kj j * kl 
20lnikO" n -b 3 iOlnklO" n --~- 3J  p n V  pnU 

This shows also that X H is a generalization of the Euler vector field of a 
one-component fluid. 

5. THE EQUILIBRIUM CONDITIONS 

The vector field X" leaves invariant the entropy and thus does not 
alone satisfy the second law. In fact, no Hamiltonian vector field could, 
since Hamiltonian vector fields do not possess attractors�9 We must therefore 
add to X H a vector field X G that is also tangent to the equienergy, equimomen- 
turn, equimass, and equi-angular momentum submanifolds, but which has 
the maxima of the entropy on these submanifolds as attractors. In fact, 
these maxima are critical points of X H. 

To construct X G we will first consider the conditions determining the 
extrema of the entropy on the submanifolds of given energy, momentum, 
mass, and angular momentum. These are partly determined by the zeros of 
the first derivatives (variations) of the entropy with respect to vector fields 
tangent to the above submanifolds. 

The class r of variations to consider consists of (1) the local deforma- 
tions generated by the vector fields of the form (Aaberge, 1986) 

(V,(u~').  V,Urr.j + V jOt .d  J). V,(o-di), Vk(a.u~ :k) + V,~:ka.kj + V~ ~:k~.~,) 
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where r is a vector field on X tangent to the boundary of the domain 
containing the system; and (2) of the vector fields X with components of 
the form 

x(~)  = VX~,' x ( ~ , ) - -  vjGJ,  + ,~J'a,kvj ~'~ ~ 

x(%,) = xp~,,  x ( , ~ , . )  = Xo-~, x ( , ~ )  = v,~"o, x ( ~ , , , )  = x . , .  

x (~ .~ )  ~ ~ ~ 

where we have introduced a new set of coordinates defined by 
N 

c r i = ~  7rm 
n = l  

~ pyTi'm+li--Pm+l ~ 7"1".,/i 
' y = I  q J = l  

Pm~- , m = 1 , . . . ,  N - 1  

"/~1 
N 

p = Y~ (det ~n)  1/5 
n = l  

r/m = ~ (det Ofn) 1/5, m = 1 , . . . ,  N -  1 
y = l  

fl~/~ = det (~ , ) - l /3an  o 

The extremal condition X(s )  = O, VX c r, then read as follow. 
1. The variation by local deformations give 

V 1 

2. The variations in the other directions give 

Vi0u~ = 0 

V i~kjV ~k~ + V j6k~V ~ = 0 

V p,,,,~ = 0 

O~,g= 0 

ViVpg~--O 
V ~ =  0 

V A 1 k -'~ k (/~.uV~,,.s -~i /3. jN~, , j ,s)  = 0 

We notice that when s depends on/3.  o only through det/3n~ (= 1), then 

/ L u v ~ , . j -  ~a ~.~,v~~ = 0 

and the extremal conditions above reduce to the extremal conditions for 
an N-component  fluid (paragraph Aaberge, 1986). 
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6. THE C O N S T R U C T I O N  OF THE GRADIENT TERM X c 
IN THE DYNAMICAL VECTOR FIELD 

Let  o~ d e n o t e  the  s o u r c e  s p a c e  for  the  i n t e n s i v e  v a r i a b l e s  o f  the  e n t r o p y  

representation and of  the variables/3.0, 
i q 

~ =  {(fl, ~' ,  o,~, ~m, ~, ~m, Yo, fln,S)e. �9 �9 } 

and let ~bs denote the map 

( U, 'Tri, . . . , [3n~i, ili . . . .  iq_,) 

~ ( a d ,  - v ~ A  �9 . . ,  -v~o,,~, ~o,j) 

The "global" extremal conditions can then be written 

~ , ,OJ l~  = 0  
^ ^ k 

( ~ k j ~  k -J- ~ki~'~ d ) O J l  $ s = 0 

~'O4,s = o ,  ~mO4,s xO, ~,oJ14,, = o, v~O~s=O 
Akj 1 k " j l  o (fi.uY.-~8,fl.jn'~).k J ~ 4 ~ = O  

Let ~ : J ~  ~ denote the submersion defined by 

i1/1 - -  I(~/j~Q-31~ (~ - -  2 ~ I ~176  

~12 : l [ 3~k i~ l j  { ( f3 -1~p j~ '~P  ),  i --~ ( [ 3 - - 1 ~ p i n P  ) , j }  

X {(~- laqk~'~q),  I "~- ( ~ - l a q l n q ) , k }  

C = �89 ~ 
e4m = l o e .  i j 

~pOijCO mCD m 

~y Sm l 2 
2 ~ T m  

~,~ = ~fl~~ - '  1, , (3 - '  v),s 
~ ' ~ 

~f l l :  m 

~18 = 1 ij -1  kl 1 k 1o ~,s~ {fl (,s.,n,,, - ~ ,  ~o,oy. )},,. 
- -  1 q p  1 p r  

and let r : A - >  R. By pullback with @ we obtain a function 

; =  ro ~b : J l ~ - >  R 

We define a family of  functions by dividing the variables of  F into two 
groups, i.e., 

- i i /j 
r , s �9 ~~ . "i'm, l",i , 1]m, ")In, k )  (13.~,v ,y . .~ . i j ,13.q ,k)[  ~, , .3,  OJ , 
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The gradient of F(.) is by definition 

grad F(.) = (V~F(.), -Va,F(.), -V,o~ F(.), - V ,  F(.), 

-v~o, -voo,~o, - v ~ o )  
and X G is assumed to be given by 

X G = grad 70 J2~s 

Thus, computing the components of X G, we get 

xG(t~) = V,{8~KVjT+ ajk Y.~V k + i~a~,~rg,j 

where 

.q_ ~ ki lj 
t~ktO a,* rc  . c . d} 

n 

xG(~ri) = ~kiXTjE k~ 

X G ( P m i )  = - -  , J a o,.rt3qV m 

xG(or,.) = -o,~rt , .  

x G ( R )  = V i ( a t k 6 r ~ , j )  

xG(~/m) = - a c , 7  rlz  m 

XG(~.~)= ~ u kl - ~ .~Vk(a~rc . , , )  + fl,k, Vj(a4rc, , ,)  

705 

~ i j  ~ (  ~ i k V ! k . . ~  ~ J k v , i  k 2R/j izk "~ .j._ ( . R i j v k  

~/ = Otk2r 

K = 00~ r 

c iJ n -~ R ik l '~  lj l Nj  r ~k l ' l  
o ~,l~nklorn --3Okl,~nkl~,n ] 

when we express the results in terms of the intensive variables of the energy 
representation corresponding to the following choice: 

(S ,  eri, Pmi,  or,,,, P,  ~m, ~nij) 

of extensive variables. Thus, T denotes the global temperature, V i the 
velocity of the center of mass,/~ the global chemical potential, v2 relative 
velocities, t,, relative temperatures, and tz, relative chemical potentials. 
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Using the above expressions for the components  o f  X G, we can compute  
XG(g). The result is (see paragraph  49 in Landau  and Lifschitz, 1971) 

xO(~ ) ,j 1 , =v , (~  K T j ) + ~  ,,~'~T,Tj 

+ 2 1  . . . .  

1 1 i �9 1 2 -~--- r vii)2.Jc--- E 03r +-- ~ 0r 7r1~ m 
T T m  ~ T ~  

1 2 1 i 1 
+ -  ~ cg,~r6ijCn ,ken ,1 + - -  ~ O,L rt m +--~ O~,r6 ~l~,dz,j ~k jt 

T r ,  T ,  

i.e., XG(S) is the sum o f  a convect ion term and quadratr ic  terms that can 
be regrouped such that their coefficients are (1/T)O,r.  

Theorem. A vector field X G constructred according to the above pre- 
scr ipt ions  satisfies the dynamical  postulate if 0 , %  > 0 Va.  

Proof. By inspection. We also notice that  X G-= 0 on the equilibrium 
states. �9 
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